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ABSTRACT 
 
This paper presents an overview on an output feedback controller with a combination of H2/H∞/µ. The design objective 
is a mixture of robust stability, nominal/robust performance, strict limitations on control signal and minimization of 
disturbance effects. In a physical system, the several targets contribute in a system control. Each one of the nominal and 
robust performance targets has their own strengths and weaknesses. A new approach in the presented paper is a 
combination of the two output feedback controllers of µ and H2/H∞.  When all objectives are formulated in terms of a 
bounded real lemma, controller design results in a solution for a system of LMI. The purpose of the presented paper is to 
make balance between the nominal and the robust performance of output feedback. First, we use mixed H2 and H∞ norm 
for a nominal performance target while the other use µ synthesis for the robust performance.  By combining these two 
controllers, the procedure of weights achievement will be formulated. Finally, modeling of an unmanned aircraft is 
applied to show the effectiveness and benefits of this method.  
 
Keywords: H2/H∞/µ controller, LMI, multi-objective output feedback, uncertain dynamic systems, single person 
aircraft. 
 
INTRODUCTION 
 
Unmodeled dynamics, non linearity of systems and the 
availability of disturbance are among some of the reasons 
explaining why the linear control systems theory has 
never reached to the ideal solution. For this reasons, 
several targets have been employed in a system control 
(Mashayekhi et al., 2013). Robust Stability means that the 
system will be stable with uncertainty, while the nominal 
performance which implies considering the system 
operation without uncertainty, has decisive effect on the 
operation of a system. By robust performance, we mean 
considering the system operation with uncertainty. It is 
obvious that whenever the singular values of controller 
are higher, the performance of systems will be more 
desirable, but at the same time, it provides higher chances 
of saturation occurrence. In order to consider the robust 
performance, we used µ analysis. Operating limitation on 
controlling signal increase of controlling signal leads to 
saturation of the actuators. H2 norm essence can be 
responsible for such targets. Minimizing disturbance 
effect distortion can result in undesirable effect of 
transient response, therefore, reduction of the effect of 
disturbance, is one of the controlling targets. Mixed norm 
of H2 and H∞ can be a useful strategy to reach the 
mentioned controlling targets. To date, several studies 

have been performed on the mixed norm and the multi- 
objective control. This paper tends to reduce controlling 
signal, robust performance and stability and design 
weight functions. One of the new approaches of this 
paper is the combination of two controllers of µ and 
H2/H∞ based on output feedback. The controller for 
robust stability status, nominal performance, robust 
performance and noise reduction are continuously 
designed. First, the controller of H2/H∞ will be designed 
for nominal performance targets, robust stability and 
noise reduction, and then µ controller will be designed for 
robust performance. Now, add up these two controllers 
and achieve their weights with LMI. Controller will be 
achieved from solving the optimization problem. At first, 
a controlling problem will be changed to LFT standard 
form, considering uncertainty, then, the status equations 
will be written and by use of the constraint's weight 
function the robust controlling targets will be reached.  
The static output-feedback problem is one of the 
problems in systems and control theory that has been 
researched a lot. The use of output feedback provides the 
flexibility and simplicity of implementation. Moreover, in 
practical applications, full state measurements are not 
usually possible. Therefore, the restricted-measurement 
static output-feedback problem is of the issues with 
extreme importance in practical controller design 
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applications such as flight control. The first formulation 
of the H∞ control problem was performed in 1981 by 
Zames. Next to Zames (1981) and Doyle et al. (1989, 
1991) were the pioneers of robust control. To date, large 
numbers of researches have been performed to study of 
the robust control, the H2 control and H∞ control. (Doyle 
et al., 1989) analyzed the state space with H∞ and H2 
standard form and its solving. The conditions of solving 
problem and its solution using Hamiltonian matrix 
introduction could be mentioned as the highlights of this 
paper. Also Doyle et al. (1991) presented a tutorial 
overview on the linear fractional transformations (LFTs) 
and the roles of the structured singular value, µ, and 
linear matrix inequalities (LMIs) in solution of LFT 
problems. Lescher et al. (2006) designed a multivariable, 
multi-objective controller to set the wind turbine. 
Controlling problem of this paper was the minimization 
of H2/H∞. This problem was solved by LMI. His 
controller resulted in reduction of costs and mechanical 
depreciation. Also, it increased the lifelong of the system. 
Rotea et al. (1991) combined H2/H∞, in this way, two 
important approaches were presented, 1) H2 optimized 
control with H∞ bound (in fact a bounded optimization), 
and 2) Simultaneous H2/H∞ optimized control. In each 
step, the problem formulation and the controller were 
implimented. Scherer et al. (1997) presented an overview 
on the approach of linear matrix inequality (LMI) for the 
multi-objective synthesis of the linear output-feedback 
controllers. The design objectives could be a mixture of 
H∞ performance, H2 performance, passivity, asymptotic 
disturbance rejection, time-domain constraints, and 
constraints on the closed-loop pole location. In addition, 
these objectives could be specified on different channels 
of the closed-loop system. In the work of Echchatbi et al. 
(2009) the robust static output feedback stabilization of 
an induction machine was addressed. The machine was 
described by a non homogenous bilinear model with 
structural uncertainties, and the feedback gain was 
computed via an iterative LMI (ILMI) algorithm. Pereira 
et al. (2004) addressed the mixed H2/H∞ robust control 
problem. An algorithm based on GAs and LMIs was 
proposed in order to find a fixed structure output 
feedback robust controller. H∞ design has been considered 
for the static output feedback, Holl et al. (2004) addressed 
the applicability of the matrix-valued sum-of-squares 
(SOS) techniques for the computations of LMI lower 
bounds. In a study conducted by  Gadewadikar et al. 
(2009) the problem of stabilization of an autonomous 
rotorcraft platform in a hover configuration exposed to 
external disturbances was discussed. Necessary and 
sufficient conditions were presented for the static output-
feedback control of linear time invariant systems using 
the H∞ approach. Prempain et al. (2001) claimed that the 
existence of a static output feedback control law is given 
in terms of the solvability of two coupled Lyapunov 
inequalities which results in a non-linear optimization 

problem. However, by the use of state-coordinate and 
congruence transformations and by imposing a block-
diagonal structure on the Lyapunov matrix to find the 
solution of a system of Linear Matrix Inequalities, they 
saw a reduction in the determination of a static output 
feedback gain, for a specific class of plants. Kanev (2004) 
expressed the reason of why the output feedback problem 
in the presence of uncertainty is a bilinear matrix 
inequality (BMI) problem, and BMI problems are not 
convex. Actually, such problems have been shown to be 
NP-hard which means that they cannot be expected to 
have polynomial time complexity. Raissi Dehkordi et al. 
(2009) dealt with the robust performance problem in a 
linear time-invariant control system in the presence of the 
robust controller uncertainty. Assuming that the plant 
uncertainty is modeled as an additive perturbation; a 
geometrical approach was followed in order to find a 
necessary and sufficient condition for the robust 
performance in the form of a bound on the magnitude of 
controller uncertainty. This method is performable for the 
SISO systems. Authors know that this method is more 
efficient than the approach of structured singular value. 
Another study, Mashayekhi et al. (2013) presented a state 
feedback control of linear time invariant systems using 
the H2/H∞/µ approach. The rest of this paper is organized 
as follows: Section I establishes the problem which will 
be addressed and the H2/H∞, µ and H2/H∞/µ combination 
control will be demonstrated. Section II presents the 
example design of Single Person Aircraft (X-29). In 
Section III, the approach will be illustrated and the results 
of the simulations will be discussed.  
 
Problem Statement 
A.  H2/H∞ Controller 
The existence of uncertainty is due to an uncertain and 
erratic input (for example noise and disturbance) and the 
Unmodeled dynamic is caused when we cannot 
completely and precisely describe a true system by a 
mathematical model at all. On the other hand, the 
important issues of a true system are the following 
objects: robust stability, robust and nominal performance, 
settling time, and maximum over shoot and so on, which 
try to gain these objectives about the controlling problem 
(Akbar et al., 2009; Lescher et al., 2006; Rotea et al., 
1991). The type of uncertainty is an important problem in 
analysis. Zhou et al. (1994) and Liu (2002) researched on 
the optimization approach of mixed H2 and H∞ norm.  
 According to small gain Theorem, a system shown in 
figure 1 is well-posed and internally stable for all 

∞∈∆ RHs )( with 1 if and only if Mγ γ−
∞ ∞

∆ < < . 
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Fig. 1. ∆M − MODEL. 
 

 
 
Fig. 2. Additive uncertainty. 
 
Additive uncertainty shown in fig. 2 robust stability task 
is: 1

H
11 K)KGI(KP)KGI(q −

∞

−− γ<+⇒+=  (1). 

The objective for the inner loop control is to design an 
output feedback law such that the close loop system 
satisfies the following performance specifications: 
 
Objective 1: if 0=∆  then 1FS <∞ (nominal 

performance). 1)GKI(S −+= (S is sensitivity function and 
F(s) is weighting function). 
 
Objective 2: if 0≠∆ then system has been robust 
stability. K)KGI(M 1−+= , 1M)S()j())j((if <γ⇒ωγ≤ω∆σ ∞

                                                                                                                    

 
Objective 3: n is white noise with one PSD (power 
spectral density). H2 Norm, cause decreasing of 
controlling signal. 1nT

2H1U < (To minimize U1 variance 

with noise input). (Mashayekhi et al., 2013) 
 
Then we have three tasks for controller design 
( 1FS <∞ , 1M)S( <γ ∞ 1T

1nU <
∞

), such that,   
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 (2). Problem (2) shown in figure 4. Rotea 

and Doyle offer two methods to solve this problem (Rotea 
et al., 1991; Zhou et al., 1994). Mashayekhi et al. (2013) 
shows similar method for solution of the simultaneous 
multivariable controller. A large class of systems with 
uncertainty can be treated as LFT (Linear fractional 
Transformation). LFT model is shown in figure 3 (Zhou 
et al., 1998).  

 

 
 

Fig. 3. LFT Model. 
 

 
 
Fig. 4. Graphical model of problem (2). 

 
W: the disturbance signals to the system which will not be 
a function of states of the system, Z: the variable that will 
be controlled, P: the nominal open loop system, Y: the 
system measurable output. To transform the changed 
diagram of figure 4 to the LFT model, we will be written 
the problem to standard form, and we will be dissolving 
using of riccati equation (Scherer, 1990). The (2) LFT 
model is practicable in form (4) and it can be used to 
design a controller by theorem 2. The state space of figure 
4 is written in (4). 
Determining 3 weight matrices, specified in figure 4, 
contain special importance. Using robust optimal output 
feedback method for (4) equations, and this is a new 
approach.  
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B. µ Controller  
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Here we try to assess robust performance of this closed-
loop system using µ-analysis associated. Robust 
performance condition is equivalent to the following 
structured singular value µ test (Doyle et al., 1991). 

1( , ) ( ) ,, PT M M Wwz γ γ µ γ−
∆∞∞∆ < ∀ ∆ < ⇔ < ∀       (5) 

The complex structured singular value ( )Mµ∆  is defined 

as
{ }( )

1

min ( ) det( ) 0M I M
µ

σ∆ =
∆ − ∆ =

. Lower and Upper 

bond of µ can be shown 
to 1( ) ( ) min ( )P UM M DMDµ σ −

∆≤ <  (Packard et al., 1993). 
 
1)  D-K iteration 
Unfortunately, it is not known how to obtain a controller 
achieving the structured singular value test directly but, 
we can obtain the lower and upper bounds of µ. Our 
approach taken here is the so-called D-K iteration 
procedure (Doyle et al., 1992). First, for D = I fixed, the 
controller K is synthesized using the well-known state-
space H∞, optimization method. LFT form of figure 2 is 
written in equation 6. 
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C.  New approach: H2/H∞, µ combination  
Now, we tend to synthesize two controllers according to 
figure 5. As mentioned before, Nominal performance 
means considering system operation without uncertainty 
has decisive effect on the operation of a system. Robust 
performance means considering operation with 
uncertainty. It is obvious that whenever the singular 
values of controller are higher, systems performance is 
more desirable, but also it provides higher chances of 
saturation occurrences. So, we tend to balance between 
robust and nominal performances. W1 and W2 are weight 
functions as matrices in multivariable systems. Of course, 
it is important that robust performance contains nominal 
performance, so, controller coefficient of µ should be 
smaller than H2/H∞ controller coefficient (Mashayekhi et 
al., 2013). In a more explicit description, controller 
includes two parts, the first one using mixed H2 and H∞ 
norm and the other using µ synthesis. These two parts, 
include weights each of which have Important roles in 
systems control, because robust and nominal performance 
targets, has its own definiteness which their combination 
can create a new solution. 
Problem A: Determine W1 and W2, in a way that an 
additive uncertainty system contains robust stability.  

1
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Fig. 5. Controller H2/H∞/µ. 

 
 
Fig. 6 Multiplication uncertainty. 
 
Problem B: Determine W1 and W2, in a way that a 
system having Multiplication uncertainty contains robust 
stability. 

 
1
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According to figures 2 and 6 we use state space to solve 
the problem A and B. 
 
1) Robust optimal static output feedback 
In this section we intended to follow the analysis of the 
conditioning of the pole placement problem with the 
multi-input case which is called the generalized output 
feedback. The Static Output-feedback (SOF) synthesis 
problem deals with a given class of systems, to derive 
theoretical conditions for the existence of a static control 
law and associate them with the numerical methods. The 
class of continuous-time, Linear Time-Invariant (LTI) 
systems is addressed. The systems are given as multi-
input/multi-output state-space models. In addition to the 
control input vector and the measure output vector that 
define the control loop, the models may include some 
other input/output signals. They are introduced for 
input/output performance specifications defined by H2 
and H∞ norms and µ synthesis. In this paper, we assume 
that the state of the generalized plant G is available for 
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the feedback. To be more precise, let a state-space 
description of P (Fig. 3) be given by (LFT Model): 

A Bclcl
C Dcl cl

A = A + BKC , B = B + BKDwcl cl w
C = C , D = Dwcl cl

= +

= +

x x w

y x w

&

                 (9)  

 
The signal W refers to disturbance. The signals U and Y 
represent the control input and the measured output, 
respectively. After gaining K1 by H2/H∞ and K2 by µ 
analysis, we tend to determine the weight functions, by 
the use of linear matrix inequality.  
 
Lemma1: (bounded-real lemma) given a constant 0>γ , 
for system, M(s) = (A, B, C) the following two statements 
are equivalent, 1) this system is stable γ<

∞
)( sM  , 

2) A symmetric positive definite matrix Q exists such 
that: (Boyd et al., 1994) 
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Lemma 2: Consider the feedback system of Figure.3, 
where G is given by (8). Then, a given controller K is 
admissible and closed loop system is robust stability and 
desired performance if and only if there exists 1 2W and W  
solving the following LMI problem: 
 
LMI of system (9), considering BRL theorem will be 
(11). ( 1β γ −= ) 
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Proof:  LMI of system (9), considering BRL theorem will 
be (12). ( 1β γ −= ) 
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Substituting into (12) yields:   
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In this method must be m=l. m, number of inputs and n, 
number of outputs. 
 
 2)   METHODOLOGY  
 
a. To design the H2 /H∞ output controller for the process 
with uncertainty. (it helps to select the weighting function 
properly).  
b. For H2/H∞ design we can use Rotea and Doyle method. 
(Rotea et al., 1991; Zhou et al., 1994; Doyle et al., 1994) 

or use 1
)G,K((RT

)G,K(M
)G,K(FS

<
⎥
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⎢
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and obtained K1. 

c. For ,F and Rγ , we use weighting functions to limit the 
magnitude of the sensitivity and complementary 
sensitivity functions. 
d. To design the µ output controller for the process with 
uncertainty (if the process is unstable, at the beginning, it 
must be stabilized).  D-K iteration method can be used to 
improve the performance of the controller design for the 
system. Peak value of the µ (D-K iteration) bound should 
be less than one, and obtained K2. 
e. Order reduction method can be used to reduce the order 
of the I+GK, and transfer to state space equation and 
given cA . 
f. ( ) ( )1 1 1 1

1 c1 2 c2 K B A A ,  K B A AC C− − − −= × − = × − . A, B are in 

P-K system (LFT Model). 
g. 1 2,W W  are given with LMI (11) then the robust 
stability of the system has to be established. 
h. H infinity norm of W2 must be smaller than W1.  
i. 21 1 2K W K W K= + . This controller (K) has robust 

stability and desired performance. 
 
I. Example Design 
A. Single Person Aircraft(X-29) 
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In an airplane five main sections could be listed they are: 
motor, body section, landing system and wheels, wing 
and tail. The pitch angle of an airplane is controlled by 
adjusting the angle (and as a result, the lift force) of the 
rear elevator. The aerodynamic forces (lift and drag) as 
well as the airplane's inertia are taken into account. The 
X-29 aircraft is a recent example of a control configured 
vehicle which was designed with a high degree of 
longitudinal static instability (up to 35 percent at low 
subsonic speeds).  The vehicle is stabilized by a full-
authority, fly – by – wire flight control system. Prior to 
the flight, the linear models were used extensively to 
determine the close loop stability, controllability, and 
handling qualities with the various control system modes 
through the flight envelope.  This section describes the 
commercials aircraft models which are now implemented. 
In the work of Bosworth (1992) which is a 
comprehensive report of NASA; the research has been 
conducted over X-29 state equation and model. Tae ( 
2000) only designed the ∞H controller over X-29. While 
Minisci et al. (2008) designed the multi-objective robust 
control for F-16 and F-18 airplanes.  The X-29 airplane is 
a relatively small, single seat, high-performance aircraft 
powered by a single F404-GE-400 engine (General 
Electric, Lynn, Massachusetts). Its empty weight is 
6350kg and the aircraft dimensions are shown in figure 7 
also, the aircraft picture is shown in figure 8 in order to 
provide a low-drag configuration the vehicle incorporates 
a forward-swept wing with close-coupled canards. The 
airplane physical characteristics are listed in table 1. 
 
The aircraft model is obtained by linearization of the 
nonlinear equations of motion about a 280 ft/sec 
(307km/h) landing configuration (Bosworth, 1992). The 
three input three output model which describes the 
longitudinal dynamics is given as follows (Bosworth, 
1992; Tae, 2000): 
 
Table. 1. X-29 physical characteristics. 
 

kg 6350 weight N.M  
8130 

Maximum trust 
force 

3.437 m2 Canard area α Angel attack 

8.29m Wing span 17.185 
m2 

Wing area 

sfδ Symmetric 
flap position 

stfδ Strake flap 
position 

θ Pitch Euler 
angel 

cδ Canard 
position 

v Horizontal 
speed 

θ& Pitch rate 

    
 

c
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stf

v (ft / sec)
α (rad)

x Ax Bu , y Cx , x
θ (rad / sec)
θ (rad)

δ (deg) θ (rad)
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Fig. 7. Axes coordinate in aircraft. 

 
Fig. 8. X-29 airplane. 
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III. Simulation results 
The longitudinal dynamics of an aircraft has one natural 
mode: the short period mode. For the X-29, the short 
period mode, however, is composed of the stable mode 
and an unstable one. At first, we design H2/H∞ controller 
and design µ controller. These controllers designed for P-
K system. This system is four input four outputs. Then, 
for reducing the order of I + GK, a residualization method 
was implemented. By consideration of the practical 

experiments and in accordance with equation (2), the 
weight functions selection with 0.0001(s + 0.01)

R = I
s + 1

, 

0.2222s + 0.6667
F = I

0.11s +1
, 0.0001(0.25s + 2)
γ = I

1.5s + 0.0001
 (Lanzon, 2000). 

1 2K and K design with equations 2 and 8. 1 2,W W , are 
obtained via equation 11. According to figure 5, K is 
design. At first we designed the weight functions which 

 
Fig. 9. Singular value for weighting functions and P (LFTModel).  

 
Fig. 10. Singular value for W1 and W2 Weighting function of  H2/H∞, µ combination. 
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were drawn in figure 9, a, b, c. are selected the weighting 
functions (Beaven et al., 1996; Sararth, 2011) by taking 
into account the practical experiments, The singular 
values of LFT model are drawn in figure 9-d. The 
Singular value for W1 and W2 Weighting function of 

H2/H∞, µ combination is shown in figure 10. 
While, the Singular value for T complementary sensitivity 
function is drawn in fig.11. the step response of T 
function is depicted in fig.12. It must be noted that, as it 
was mentioned, the system is multi input-output; and the 

 
 
Fig.11. Singular value for T complementary sensitivity function. 
 

 
Fig. 12. Step responses for T complementary sensitivity function. 
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weight and sensitivity functions are the shape of matrix. 
The sign of success is the combination of nominal and 
robust performance, together. Accomplishment in 
reaching to the targets with the minimum controlling 
signal is of the gains of noted controller. The open-loop 
system is an unstable one, but the close-loop system 
showed appropriate results. 

 
CONCLUSION  
 
The paper brings out a global approach for robust static 
output-feedback design in which the multiple 
specifications can be simultaneously defined.  In this 
paper, the problem of the mixed H2/H∞/µ robust control 
was addressed. An algorithm based on LMIs has been 
proposed in order to find a reach to a static output 
feedback robust controller which minimizes the cost of an 
H2 performance subjected to H∞ norm and µ synthesis 
constraints. Each of the nominal and the robust 
performances has their own strengths and weaknesses.  
The availability of robust performance has lead to the 
intensive limitations on the controller, which sometimes 
exhales it from a possible problem (Keel et al., 1997). 
Also, availability of the nominal performance means 
considering the system operation without uncertainty, and 
it is usual that the essence of uncertainty has a decisive 
effect on the operation of the system. New approach of 
this paper is a combination of two controllers of µ and 
H2/H∞ based on output feedback. The controllers for 
robust stability status, nominal performance, robust 
performance and noise reduction are continuously 
designed. First, the controller of H2/H∞ will be designed 
for nominal performance targets, robust stability and 
reduction of noise, and then µ controller will be designed 
for robust performance. Afterwards, these two controllers 
are added up and their weights would be obtained through 
LMI. Also, the controller will be achieved from solution 
of the optimization problem. This paper attempts to 
present an implementation approach for the multivariable 
controlling systems. In operation, we look for 
minimization of the faults. If the available error function 
is not desirable, the use of a suitable weight function can 
lead us to the target. So, design of the weight function is 
extremely important. By knowing the data of the problem, 
we will have the information on which of the frequencies 
has more uncertainty effect. It is obvious that the 
controller effect of µ should be considered here. Because 
of multivariable exceptional values system, controller and 
considered inputs-outputs were shown. Using two low 
pass filters and one high pass filter for H2/H∞ controller, 
we tended to optimize the solutions. First, the equations 
of X-29 aircraft state space are written. Then, the robust 
static output-feedback controller will be designed. The 
results which are shown in the figures indicate that the 
unstable system becomes stable in the presence of 
uncertainty using the proposed controller. The results are 

also indicative that the proposed approach shows an 
appropriate and desired performance. 
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